
	Thin Fi	Im Chip Fus	se	Document No	TCP-XX0S006N					
		Issued date	2024/03/27							
	C	US		Page	1/19					
1. Scope This specification	1. Scope This specification applies for the fuse series of thin film chip fuse made by TA-I.									
2. Constructior	2. Construction									
		Over Coat		Conductor						
Sn Plating —	+									
		Fuse Element		\langle						
	 Ceramic Substrate		Cu / 1	Ni Plating						
3. Type Design	ation									
CP	06	V5	Т		R50					
Chip Fuse	Size 04:0402(1005) 06:0603(1608) 12:1206(3216)	Rate Voltage V6:63V V5:50V V3:32V	Packaging T: Paper Tape (5K/10K)	e R	e Current 50:0.5A IR0:1A					

US

Document No	TCP-XX0S006N
Issued date	2024/03/27
Page	2/19

4. Dimensions

Unit: mm

Туре	Dimensions (mm)							
(Inch Size code)	L	W	С	d	t			
CP04 (0402)	1.0±0.1	0.52±0.05	0.2±0.1	0.25±0.1	0.35±0.05			
CP06 (0603)	1.6±0.1	0.80±0.10	0.3±0.2	0.35±0.2	0.45±0.10			
CP12 (1206)	3.1±0.1	1.55±0.10	0.5±0.3	0.50±0.2	0.60±0.10			

5. Applications and ratings

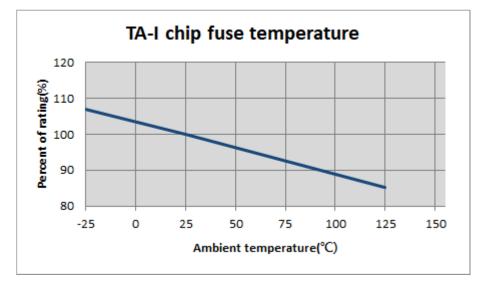
Part Designation	Marking	Rated Current	Fusing Time	Resistance (m Ω) Tolerance $\pm 25\%$	Rated Voltage	Breaking Capacity	Temperature
CP04V3TR50	F	0.50A		380			
CP04V3TR80	K	0.80A		120			
CP04V3T1R0	L	1.00A		95			
CP04V3T1R25	M	1.25A	Open	67			
CP04V3T1R50	Р	1.50A	within	51		D OOOL(75°0 -+ 4000(
CP04V3T1R60	Ν	1.60A	5sec.at 200%	46	DC 32V	DC32V 35A	<75°C at 100% rated current
CP04V3T2R0	S	2.00A	rated	33		007	Taleu current
CP04V3T2R50	Т	2.50A	current	22.5			
CP04V3T3R0	3	3.00A		20			
CP04V3T3R15	U	3.15A		19			
CP04V3T4R0	W	4.00A		16			

*Resistance valve was measured with less than 10% of rated current

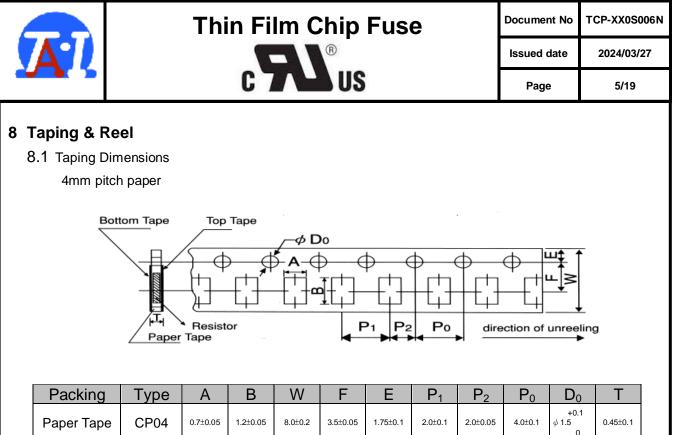
Part Designation	Marking	Rated Current	Fusing Time	Resistance (m Ω) Tolerance± 25%	Rated Voltage	Breaking Capacity	Body Temperature rising
CP06V5TR50	F	0.50A		260	DC 50V	DC50V 50A	
CP06V3TR63		0.63A		218			
CP06V3TR80	K	0.80A		132			
CP06V3T1R0	L	1.00A		84.5			
CP06V3T1R25	M	1.25A	Open	63			
CP06V3T1R50	Р	1.50A	within	50.5			<75℃ at
CP06V3T1R60	Ν	1.60A	5sec.at 200%	46	AC/DC 32V	AC/DC32V	100% rated
CP06V3T2R0	S	2.00A	rated	32	AC/DC 32V	50A	current
CP06V3T2R50	Т	2.50A	current	25.5			
CP06V3T3R00	3	3.00A		20			
CP06V3T3R15	U	3.15A		19			
CP06V3T4R0	W	4.00A		13]		
CP06V3T5R0	Y	5.00A		10			

*Resistance valve was measured with less than 10% of rated current

Part Designation	Marking	Rated Current	Fusing Time	Resistance (m Ω) Tolerance±25%	Rated Voltage	Breaking Capacity	Body Temperature rising
CP12V6TR50	F	0.50A		527.5			
CP12V6TR80	К	0.80A		211			
CP12V6T1R0	L	1.00A		145.5	DC	DC63V	
CP12V6T1R25	M	1.25A	Open	90	63V	50A	<75℃at
CP12V6T1R50	Р	1.50A	within	83			
CP12V6T2R0	S	2.00A	5sec.at 200%	57			100% rated
CP12V3T2R50	Т	2.50A	rated	37			current
CP12V3T3R00	3	3.00A	current	26			
CP12V3T4R0	W	4.00A		18	DC 32V	DC32V 50A	
CP12V3T5R0	Y	5.00A		13]	00/1	
CP12V3T7R0	Z	7.00A		9			


*Resistance valve was measured with less than 10% of rated current

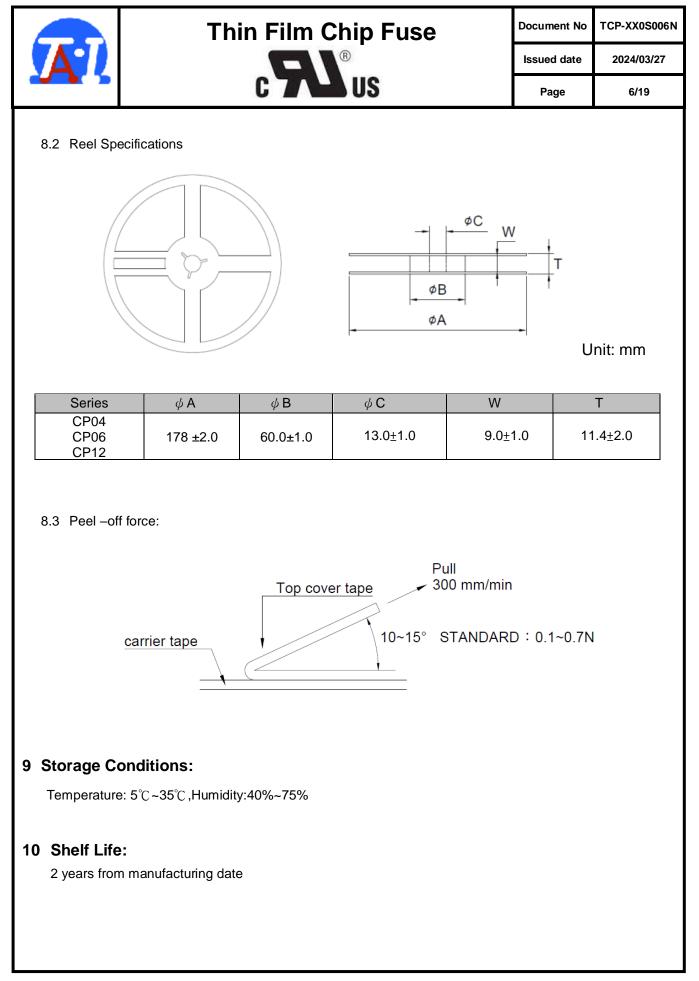
Document NoTCP-XX0S006NIssued date2024/03/27Page4/19


6 Temperature Derating Curve

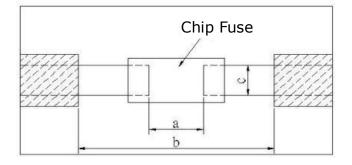
- 6.1 Normal Ambient Temperature: $25^{\circ}C$
- 6.2 Operating Temperature: -25° C $\sim 125^{\circ}$ C , with proper derating factor as below:

7 Reliability Tests

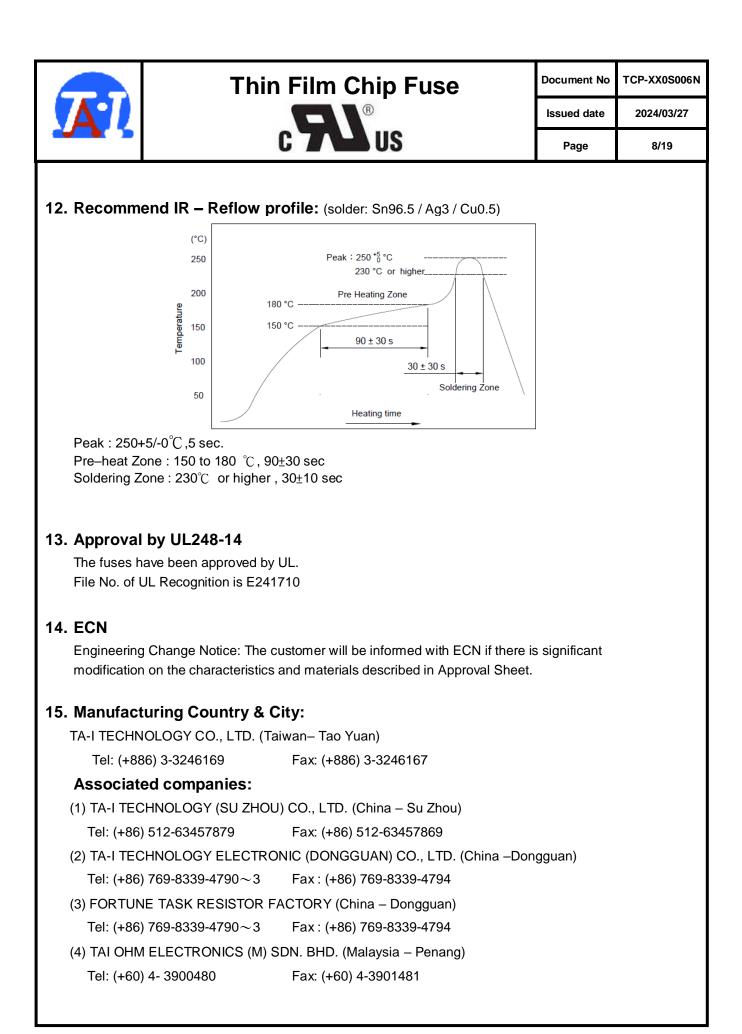
Parameter	Requirement	Test Method
Carrying capacity	No fusing	Rated current ,4hr
Fusing Time	Within 5 seconds	200% of its rated current
Interrupting Ability	No mechanical damages	After the fuse is interrupted, rated voltage applied for 30sec again
Bending Test	No mechanical damages	Distance between holding points: 90mm, Bending:3mm,1time ,30sec
Resistance to solder Heat	±20%	260℃±5℃,10±1second
Solderability	95% coverage minimum	235℃±5℃ , 2±0.5second 245℃±5℃ , 2±0.5second (Lead Free)
Temperature Rise	<75°C	100% of its rated current, Measure of surface temperature
Resistance to Dry Heat	±20%	105°C ±5°C ,1000 hrs
Resistance to Solvent	No evident damages on protective coating and marking	$23^{\circ}C\pm5^{\circ}C$ of Isopropyl alcohol 90second
Residual Resistance	10k Ω and more	Measure DC resistance after fusing
Thermal Shock	△ R< 10 %	-25℃/+25℃/+125℃/+25℃, 10 cycles



Paper Tape	CP04	0.7±0.05	1.2±0.05	8.0±0.2	3.5±0.05	1.75±0.1	2.0±0.1	2.0±0.05	4.0±0.1	+0.1 φ 1.5 0	0.45±0.1
Paper Tape	CP06	1.1±0.1	1.9±0.1	8.0±0.2	3.5±0.05	1.75±0.1	4.0±0.1	2.0±0.05	4.0±0.1	+0.1 φ 1.5 -0	0.64±0.1
Paper Tape	CP12	2.0 <u>±</u> 0.15	3.6±0.2	8.0±0.2	3.5±0.05	1.75±0.1	4.0±0.1	2.0±0.05	4.0±0.1	+0.1 φ 1.5 -0	0.84±0.1


Unit: mm

Type Size		Paper Tape	
		2 mm pitch	
		180mm/R	
CP	04	10000	

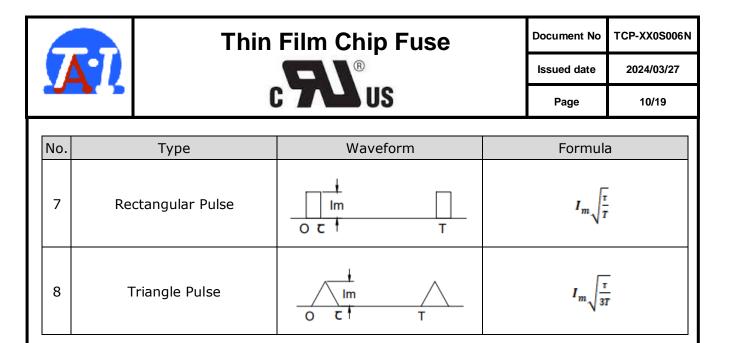

Type series		Paper Tape		
		4 mm pitch		
		180mm/R		
CP	06	5000		
CP	12	5000		

	Document No	TCP-XX0S006N						
	Thin Film Chip Fuse	Issued date	2024/03/27					
	C 7 US	Page	7/19					
11 Recommended land patterns								

\sum	Land pattern		Dimension	
Туре	Size	а	b	с
СР	04 (0402)	0.55~0.65	1.40~1.60	0.74~0.94
СР	06 (0603)	0.85~0.95	2.00~2.20	1.50~1.70
СР	12 (1206)	0.95~1.05	4.40~5.00	2.30~2.50

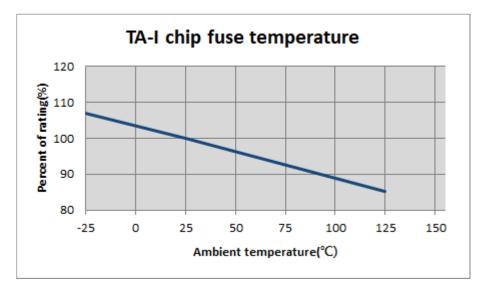
Thin Film Chip Fuse **GU**[®]US

Document No TCP-XX0S006N 2024/03/27 Issued date Page


16. Selection Guideline of Fuse:

- Checklist of selection factors
 - ○Normal operating current
 - ○Normal operating voltage (AC or DC)
 - ⊘Ambient Temperature
 - \odot Overload current and length of time in which the fuse must open .
 - ⊚ Type of fuse (SMD or Tube) and physical size limitation (0603 or 1206)
 - ◎ Agency Approval required (e.g., UL248-14)
- Normal operating current

e.g., Rectangular Wave, If I p = 1.5 A, Normal operating current = 1.5 A


No.	Туре	Waveform	Formula			
1	Sinusoidal Waveform		$\frac{1}{\sqrt{2}}I_m \neq 0.707I_m$			
2	All Wave Rectification		$\frac{1}{\sqrt{2}}I_m \neq 0.707I_m$			
3	Half Wave		0. 5 <i>I</i> _m			
4	Triangle Waveform		$\frac{1}{3}I_m \neq 0.577I_m$			
5	Rectangular Waveform		I _m			
6	Trapezoidal Waveform		$I_m \sqrt{1 - \frac{8\alpha}{3T}}$			
		•				

TA-I TECHNOLOGY CO., LTD

- Derating ratio for different ambient Temperature
 - Referring to bottom figure and select the appropriate derating ratio :
 - e.g., Ambient temperature is 60 degree C

the derating ratio≒0.95

- Calculating the required rating of fuse needed.
 - $\odot\,$ Safety coefficient: 70% is safety coefficient from practical experience

```
\bigcirc \frac{Normal \ Operating \ Current}{0.7 \times derating \ ratio} < rating \ current \ of \ fuse
```

Condition: Normal operating current =1.5 A Ambient temperature 40 $^{\circ}C$: Derating ratio = 0.95

Document No TCP-XX0S006N

Issued date 2024/03/27 Page

11/19

1.5 $\frac{1}{0.7 \times 0.95} < rating current of fuse$

2.255 < rating current of fuse

Determination of the type of fuse

e.g.Condition:

- Calculating value =2.255 A, 2.255A < rating current of fuse</p>
- Normal operating voltage : DC 12 V
- Following bottom index-table: suggesting use CP06V3T2R50.

Part Designation	Marking	Rated Current	Rated Voltage	Part Designation	Marking	Rated Current	Rated Voltage	Part Designation	Marking	Rated Current	Rated Voltage
CP04V3TR50	F	0.50A	32V	CP06V5TR50	F	0.50A	50V	CP12V6TR50	F	0.50A	63V
CP04V3TR80	К	0.80A	32V	CP06V3TR63	Ι	0.63A	32V	CP12V6TR80	К	0.80A	63V
CP04V3T1R0	L	1.00A	32V	CP06V3TR80	К	0.80A	32V	CP12V6T1R0	L	1.00A	63V
CP04V3T1R25	<u>M</u>	1.25A	32V	CP06V3T1R0	L	1.00A	32V	CP12V6T1R25	<u>M</u>	1.25A	63V
CP04V3T1R50	Р	1.50A	32V	CP06V3T1R25	M	1.25A	32V	CP12V6T1R50	Р	1.50A	63V
CP04V3T1R60	Ν	1.60A	32V	CP06V3T1R50	Р	1.50A	32V	CP12V6T2R0	S	2.00A	63V
CP04V3T2R0	S	2.00A	32V	CP06V3T1R60	Ν	1.60A	32V	CP12V3T2R50	Т	2.50A	32V
CP04V3T2R50	Т	2.50A	32V	CP06V3T2R0	S	2.00A	32V	CP12V3T3R00	3	3.00A	32V
CP04V3T3R0	3	3.00A	32V	CP06V3T2R50	Т	2.50A	32V	CP12V3T4R0	W	4.00A	32V
CP04V3T3R15	U	3.15A	32V	CP06V3T3R00	3	3.00A	32V	CP12V3T5R0	Y	5.00A	32V
CP04V3T4R0	W	4.00A	32V	CP06V3T3R15	U	3.15A	32V	CP12V3T7R0	Z	7.00A	32V
				CP06V3T4R0	W	4.00A	32V				
				CP06V3T5R0	Y	5.00A	32V				

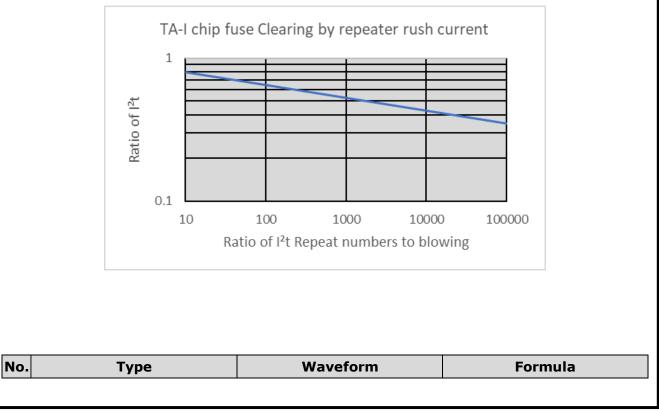
Inrush current:

- Considering inrush waveform & calculate l²t (A²s) value
- Choosing fuse's l²t (A²s) value > calculate l²t (A²s) value
- Considering Ratio of I²t repeat numbers to blowing.
- Confirm with us.

e.g., choosing 0603 Fuse

Condition:

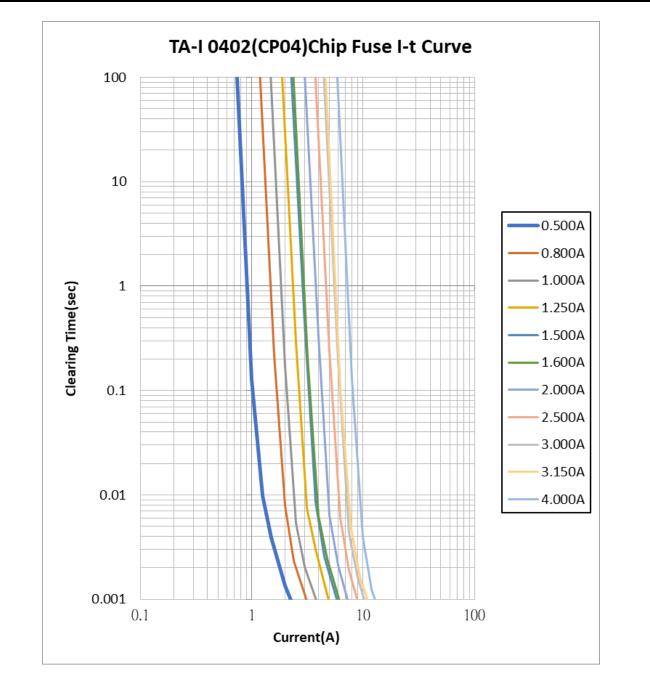
- 1. Rectangular Wave, lp = 4 A, t = 1 ms, calculate $lp^{2}t = 4^{2} x 1 x 10^{-3} = 0.016 (A^{2}s)$
- 2. Choosing CP06V3T1R50, I²t = 0.0623 (A²s) \rightarrow Page 12 index-table
- 3. Inrush shock : 100,000 times (=0.35) \rightarrow inrush ratio
- 4. Choosing fuse's I²t (A²s) value X Derating ratio (inrush 100000 times) > calculate I²t (A²s) value
- 5. $0.0623 \times 0.35 = 0.0218$ (A²s) > $0.016 \rightarrow$ CP06V3T1R50 is able to meet circuit's application

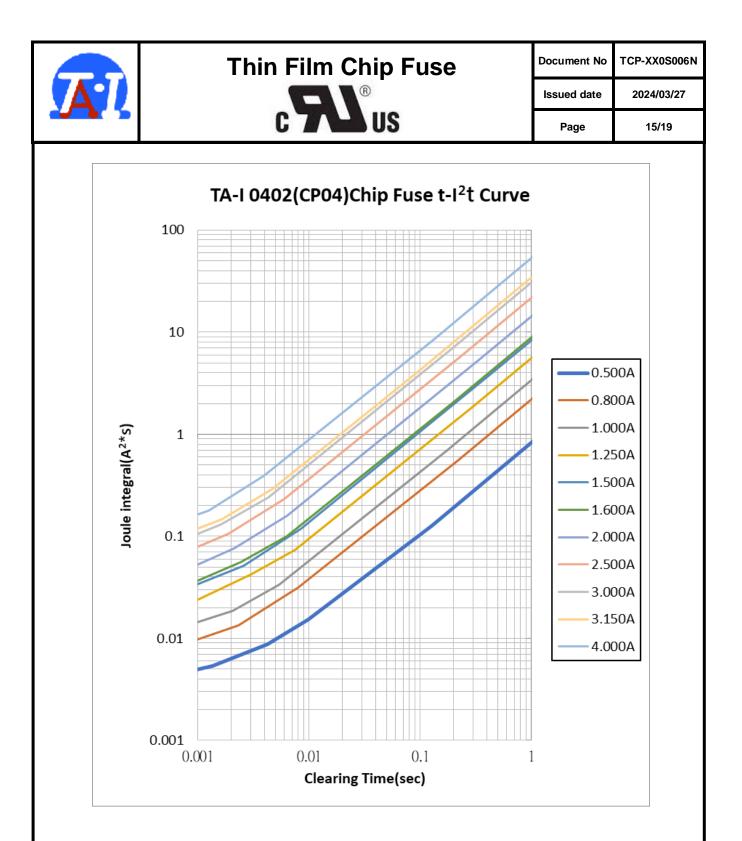

TA-I TECHNOLOGY CO., LTD

Document NoTCP-XX0S006NIssued date2024/03/27Page12/19

TA-I FUSE I ² t (A ² s)							
Part Number	Typical I² t (A² s)	Part Number	Typical I² t (A² s)	Part Number	Typical I²t (A² s)		
CP04V3TR50	0.00317	CP06V5TR50	0.0088	CP12V6TR50	0.015		
CP04V3TR80	0.00532	CP06V3TR63	0.0125	CP12V6TR80	0.040		
CP04V3T1R0	0.00724	CP06V3TR80	0.0206	CP12V6T1R0	0.062		
CP04V3T1R25	0.01344	CP06V3T1R0	0.0211	CP12V6T1R25	0.094		
CP04V3T1R50	0.01356	CP06V3T1R25	0.0472	CP12V6T1R50	0.141		
CP04V3T1R60	0.01672	CP06V3T1R50	0.0623	CP12V6T2R0	0.285		
CP04V3T2R0	0.01983	CP06V3T1R60	0.0817	CP12V3T2R50	0.445		
CP04V3T2R50	0.03763	CP06V3T2R0	0.1176	CP12V3T3R00	0.639		
CP04V3T3R0	0.05427	CP06V3T2R50	0.1807	CP12V3T4R0	1.109		
CP04V3T3R15	0.06304	CP06V3T3R00	0.3177	CP12V3T5R0	1.710		
CP04V3T4R0	0.08960	CP06V3T3R15	0.3615	CP12V3T7R0	3.300		
		CP06V3T4R0	0.5348				
		CP06V3T5R0	0.7726				

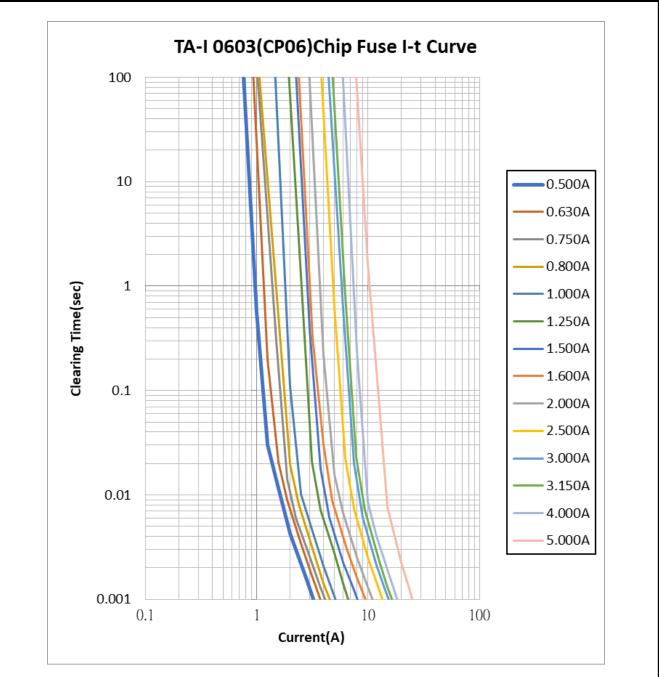
Note*: Typical l²t value is measured at 10x-rated current, Application with surge over 10x-rated current. Please confirm with us.

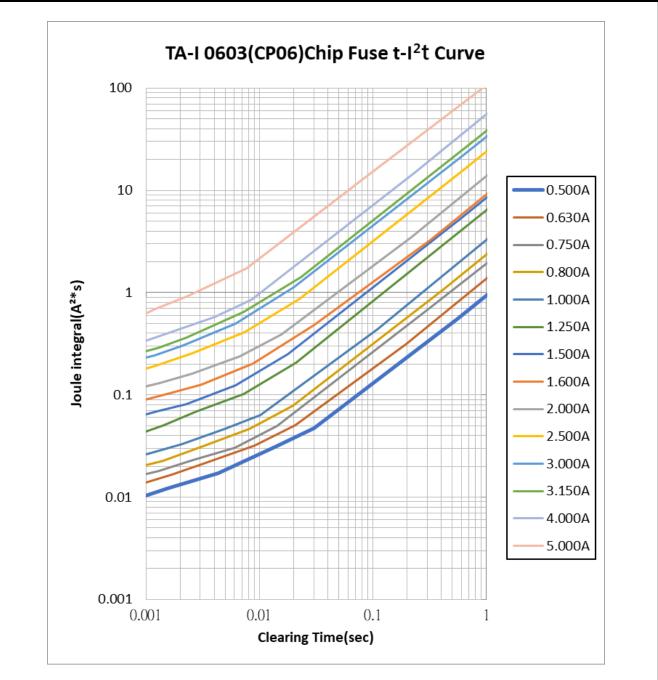

TA-I TECHNOLOGY CO., LTD


			Film Chip Fuse	Document No Issued date	TCP-XX0S006N 2024/03/27		
				Page	13/19		
1	Sinus	soidal Waveform (1 Cycle)	$ \begin{array}{c c} & 1 \\ \hline & 1 \\ \hline \hline \hline & 1 \\ \hline \hline \hline \hline & 1 \\ \hline \hline$	$\frac{1}{2}I_m^2t$			
2	Sinusoidal Waveform (1/2 Cycle)			$\frac{1}{2}{I_m}^2t$			
3	Tria	ngle Waveform		$\frac{1}{3}I_m^2 t$			
4	Recta	ngular Waveform		$I_m^2 t$			
5	Trape	zoidal Waveform	0 t, t, t, l	$\frac{1}{3}I_m^2 t + I_m^2(t_1 - t_2) + \frac{1}{3}I_m^2(t_2 - t_3)$			
6	Vario	ous Waveform 1		$I_1I_2t + \frac{1}{3}(I_1 - I_2)^2t$			
7	Vario	ous Waveform 2		$I_1I_2t + \left[I_1I_2t + \frac{(I_1 - I_2)^2}{3}\right] *$ $(t_2 - t_1) + \frac{1}{3}(I_2)^2(t_3 - t_2)$			
8	Cha	rge/Discharge Waveform	$0.368 \text{Im} \qquad i(t)=\text{Ime}^{-tc}$ $0.368 \text{Im} \qquad t$	$\frac{1}{2}(I_m^2\tau)$			
9	Lie	ghtning Surge Waveform		$- I_m^2 \left[\frac{t_1}{3} + 0.721(t_2 - t_1) \right]$			
LI							

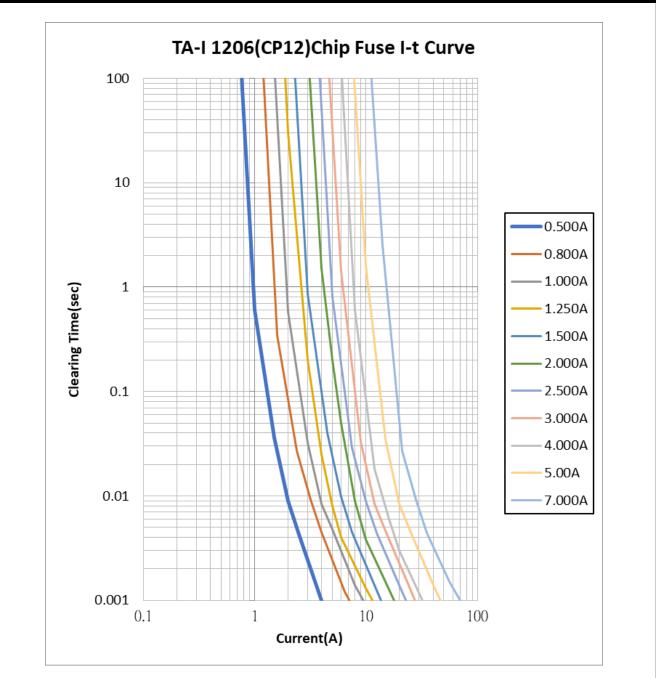
C

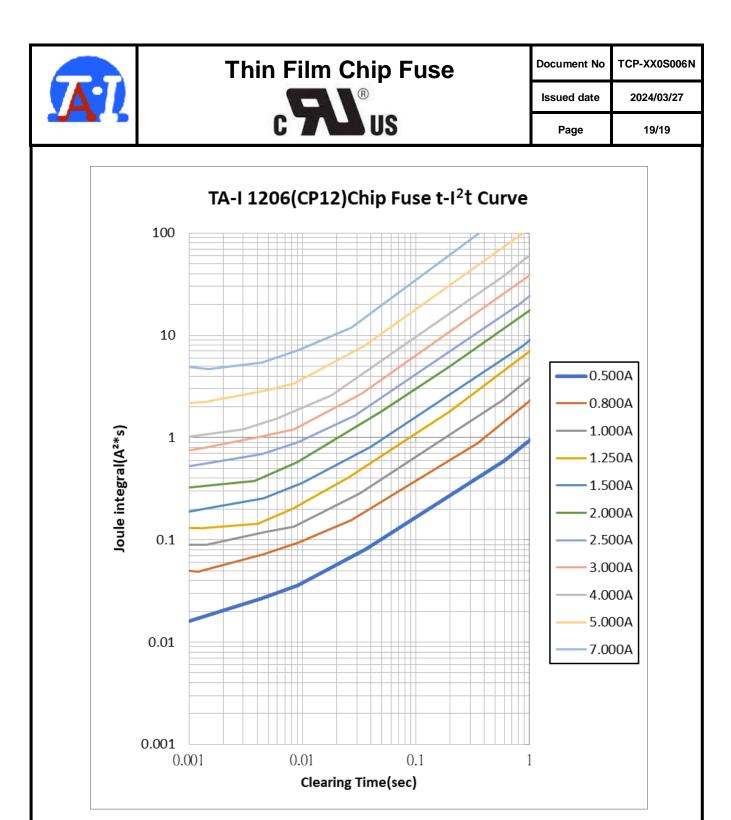
TCP-XX0S006N Document No Issued date 2024/03/27 14/19 Page




C

TCP-XX0S006N Document No Issued date 2024/03/27 16/19 Page


Document NoTCP-XX0S006NIssued date2024/03/27Page17/19



C

TCP-XX0S006N Document No Issued date 2024/03/27 18/19 Page

