
# Thin Film Chip Fuse (AEC-Q200 tested/C7000)

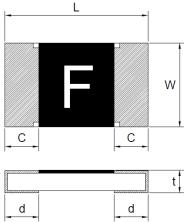
| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 1/20          |

### 1. Scope

This specification applies for the fuse series of thin film chip fuse made by TA-I.

### 2. Construction




### 3. Type Designation

| CFS       | 06                                              | V5                         | Т                         | R50                |
|-----------|-------------------------------------------------|----------------------------|---------------------------|--------------------|
|           | Size                                            | Rate Voltage               | Packaging                 | Rate Current       |
| Chip Fuse | 04:0402(1005)<br>06:0603(1608)<br>12:1206(3216) | V6:63V<br>V5:50V<br>V3:32V | T: Paper Tape<br>(5K/10K) | R50:0.5A<br>1R0:1A |



| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 2/20          |

### 4. Dimensions



| Туре             | Dimensions (mm) |           |         |          |           |  |  |
|------------------|-----------------|-----------|---------|----------|-----------|--|--|
| (Inch Size code) | L               | W         | С       | d        | t         |  |  |
| CFS04(0402)      | 1.0±0.1         | 0.52±0.05 | 0.2±0.1 | 0.25±0.1 | 0.35±0.05 |  |  |
| CFS06(0603)      | 1.6±0.1         | 0.80±0.10 | 0.3±0.2 | 0.35±0.2 | 0.45±0.10 |  |  |
| CFS12(1206)      | 3.1±0.1         | 1.55±0.10 | 0.5±0.3 | 0.50±0.2 | 0.60±0.10 |  |  |

Unit: mm

### 5. Applications and ratings

| Applications        |         | J -              |                |                                                  |                  |                      |              |
|---------------------|---------|------------------|----------------|--------------------------------------------------|------------------|----------------------|--------------|
| Part<br>Designation | Marking | Rated<br>Current | Fusing<br>Time | Resistance (m $\Omega$ )<br>Tolerance $\pm 25\%$ | Rated<br>Voltage | Breaking<br>Capacity | IAMNATATIITA |
| CFS04V3TR50         | F       | 0.50A            |                | 300                                              |                  |                      |              |
| CFS04V3TR80         | K       | 0.80A            |                | 78                                               |                  |                      |              |
| CFS04V3T1R0         | L       | 1.00A            |                | 75                                               |                  |                      |              |
| CFS04V3T1R25        | M       | 1.25A            |                | 44                                               |                  |                      |              |
| CFS04V3T1R50        | Р       | 1.50A            | Open within    | 34.5                                             |                  | D.0001/              | <75°C at     |
| CFS04V3T1R60        | N       | 1.60A            | 5sec.at250%    | 29.5                                             | DC 32V           | DC32V<br>35A         | 100% rated   |
| CFS04V3T2R0         | S       | 2.00A            | rated current  | 23                                               |                  | 00/1                 | current      |
| CFS04V3T2R50        | Т       | 2.50A            |                | 18                                               |                  |                      |              |
| CFS04V3T3R0         | 3       | 3.00A            |                | 15                                               |                  |                      |              |
| CFS04V3T3R15        | U       | 3.15A            |                | 14                                               |                  |                      |              |
| CFS04V3T4R0         | W       | 4.00A            |                | 10                                               |                  |                      |              |

<sup>\*</sup>Resistance valve was measured with less than 10% of rated current

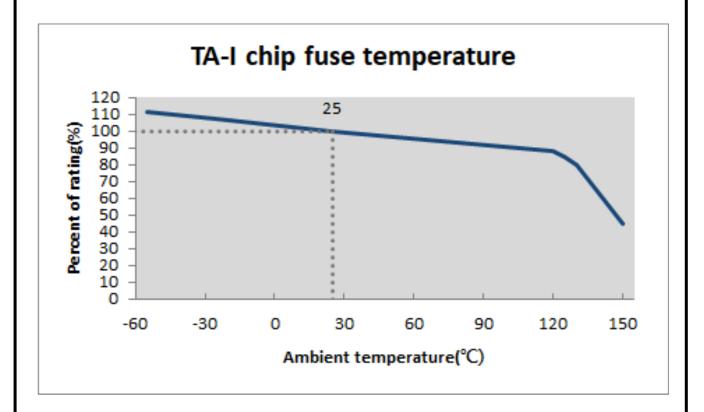


| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 3/20          |

| Part<br>Designation | Marking  | Rated<br>Current | Fusing<br>Time            | Resistance (m $\Omega$ )<br>Tolerance±25% | Rated<br>Voltage | Breaking<br>Capacity | Body<br>Temperature<br>rising |
|---------------------|----------|------------------|---------------------------|-------------------------------------------|------------------|----------------------|-------------------------------|
| CFS06V5TR40         | <u>E</u> | 0.4A             |                           | 350                                       | DC 50V           | 50A                  |                               |
| CFS06V5TR50         | F        | 0.50A            |                           | 232                                       | DC 50V           | DC50V/<br>AC35V      |                               |
| CFS06V3TR63         | I        | 0.63A            |                           | 150                                       |                  |                      |                               |
| CFS06V3TR70         | J        | 0.70A            |                           | 148                                       |                  |                      |                               |
| CFS06V3TR80         | K        | 0.80A            |                           | 113                                       |                  |                      |                               |
| CFS06V3T1R0         | L        | 1.00A            |                           | 67                                        |                  |                      |                               |
| CFS06V3T1R25        | <u>M</u> | 1.25A            |                           | 50                                        |                  |                      |                               |
| CFS06V3T1R50        | Р        | 1.50A            | Open within               | 42                                        |                  |                      | <75°C at                      |
| CFS06V3T1R60        | Ν        | 1.60A            | 5sec.at250% rated current | 40                                        | DC 32V           | 50A<br>DC32V/        | 100% rated current            |
| CFS06V3T2R0         | S        | 2.00A            |                           | 27                                        | DC 32V           | AC35V                |                               |
| CFS06V3T2R50        | Т        | 2.50A            |                           | 19.5                                      |                  |                      |                               |
| CFS06V3T3R00        | 3        | 3.00A            |                           | 16                                        |                  |                      |                               |
| CFS06V3T3R15        | U        | 3.15A            |                           | 15                                        |                  |                      |                               |
| CFS06V3T4R0         | W        | 4.00A            |                           | 11                                        |                  |                      |                               |
| CFS06V3T5R0         | Υ        | 5.00A            |                           | 8                                         |                  |                      |                               |
| CFS06V3T6R0         | <u>6</u> | 6.00A            |                           | 6                                         |                  |                      |                               |

<sup>\*</sup>Resistance valve was measured with less than 10% of rated current

| Part<br>Designation | Marking  | Rated<br>Current | Fusing<br>Time | Resistance(m $\Omega$ )<br>Tolerance±25% | Rated<br>Voltage | Breaking<br>Capacity | Body<br>Temperature<br>rising |
|---------------------|----------|------------------|----------------|------------------------------------------|------------------|----------------------|-------------------------------|
| CFS12V6TR50         | F        | 0.50A            |                | 596                                      |                  |                      |                               |
| CFS12V6TR80         | K        | 0.80A            |                | 165                                      |                  |                      |                               |
| CFS12V6T1R0         | L        | 1.00A            |                | 132                                      | DC               | DC63V                |                               |
| CFS12V6T1R25        | <u>M</u> | 1.25A            | Open within    | 90                                       | 63V              | 50A                  | <75°C at                      |
| CFS12V6T1R50        | Р        | 1.50A            |                | 79                                       |                  |                      |                               |
| CFS12V6T2R0         | S        | 2.00A            | 5sec.at250%    | 41                                       |                  |                      | 100% rated                    |
| CFS12V3T2R50        | Т        | 2.50A            | rated current  | 33                                       |                  |                      | current                       |
| CFS12V3T3R00        | 3        | 3.00A            |                | 23                                       |                  |                      |                               |
| CFS12V3T4R0         | W        | 4.00A            |                | 15.5                                     | DC<br>32V        | DC32V<br>50A         |                               |
| CFS12V3T5R0         | Υ        | 5.00A            |                | 13                                       |                  |                      |                               |
| CFS12V3T7R0         | Z        | 7.00A            |                | 7                                        |                  |                      |                               |


<sup>\*</sup>Resistance valve was measured with less than 10% of rated current



| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 4/20          |

### 6 Temperature Derating Curve

- 6.1 Normal Ambient Temperature: 25℃
- 6.2 Operating Temperature: -55°C ~150°C, with proper derating factor as below:

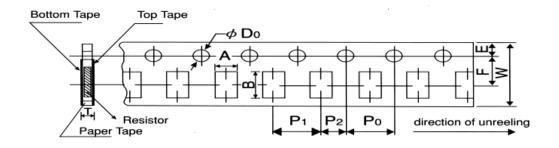




| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 5/20          |

### 7. Reliability Tests

| No. | Parameter                             | Reference<br>Standard       | Test Method                                                                                                                                                  | Requirement                              |
|-----|---------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| #1  | Solderability                         | J-STD-002,                  | Aging 4 hours at 155 °C dry heat Lead-free solder bath at (1) Method B1: 245 ±5°C solder, 5±0.5 sec dwell. (2) Method D: 260 ±5°C solder, 30 ±0.5 sec dwell. | 95%<br>coverage<br>minimum               |
| #2  | Resistance to solder Heat             | MIL-STD-202<br>Method 210   | Condition K: 250±5°C solder, 30±5 sec dwell. Time above 217 °C, 60~150 sec.                                                                                  | ±10%                                     |
| #3  | Mechanical<br>Shock                   | MIL-STD-202,<br>Method 213, | Wave Form: Tolerance for half sine shock pulse.<br>Peak value is 100g's. Normal duration(D) is 6(ms)                                                         | ±10%                                     |
| #4  | Vibration                             | MIL-STD-202,<br>Method 204  | 5 g's for 20 min., 12 cycles each of 3 orientations.<br>(Note: Test from 10-2000 Hz.)                                                                        | ±10%                                     |
| #5  | Terminal<br>Strength                  | AEC-Q200-006                | Force of 1.8kg for 1206/0603<br>Force of 1.0kg for 0402                                                                                                      | ±10%                                     |
| #6  | High<br>Temperature<br>Storage        | MIL-STD-202,<br>Method 108  | With exemptions 1000 hrs. @ T=150°C. Unpowered.                                                                                                              | ±20%                                     |
| #7  | Temperature<br>Cycling                | JESD22<br>-A-104            | 1000 Cycles (-40°C to +125°C), 30min maximum dwell time at each temperature extreme. Measurement at 24±4 hours after test conclusion.                        | ±10%                                     |
| #8  | Humidity Bias                         | MIL-STD-202,<br>Method 103  | 1000 hours 85°C/85%RH. Note: Specified conditions: 10% of operating current. Measurement at 24±2 hours after test conclusion.                                | ±10%                                     |
| #9  | Operational Life                      | MIL-STD-202<br>Method 108   | 1000 hours TA=85°C at 70% rated current.  Measurement at 24±2 hours after test conclusion                                                                    | ±10%                                     |
| #10 | Resistance to<br>Solvent              | MIL-STD-202<br>Method 215   | a:Isopropyl Alcohol: Mineral Spirits= 1:3 b:Terpene Defluxer c:Deionized water: Propylene Glycol: Monomethyl Ether: monoethanolamine = 42:1:1                | No evident damages on protective coating |
| #11 | Board Flex<br>(Bending)               | AEC-Q200-005                | 3mm deflection                                                                                                                                               | ±10%                                     |
| #12 | Carrying capacity                     | UL248-14                    | Rated current ,4hr                                                                                                                                           | ±10%                                     |
| #13 | Fusing Time                           | UL248-14                    | 200% of its rated current                                                                                                                                    | 1~120 sec                                |
| #14 | Interrupting<br>Ability               | UL248-14                    | After the fuse is interrupted, rated voltage applied for 30sec again                                                                                         | No mechanical damages                    |
| #15 | Temperature<br>Rise                   | UL248-14                    | 100% of its rated current, Measure of surface temperature                                                                                                    | ΔT<75°C                                  |
| #16 | Residual<br>Resistance                | UL248-14                    | Measure DC resistance after fusing                                                                                                                           | 10kΩ and more                            |
| #17 | Low Temperature<br>Storage            | JESD22-A119                 | 1000 hrs. @ T=-55°C. Unpowered.  Measurement at 24±2 hours after test conclusion.                                                                            | ±10%                                     |
| #18 | High<br>Temperature<br>Operating Life | MIL-STD-202<br>Method 108   | 1,000 hours, 150°C. Biased at the derated nominal 45% of fuse current rating. Measurement at 24±2 hours after test conclusion.                               | ±20%                                     |
| #19 | Flammability                          | UL-94                       | V-0 or V-1 are acceptable. Electrical test not required.                                                                                                     | V-0 or V-1                               |
| #20 | External Visual                       | MIL-STD-883<br>Method 2009  | Inspect device construction, marking and workmanship. Pre and Post Electrical Test not required                                                              |                                          |
| #21 | Physical<br>Dimensions                | JESD22-B100                 | Verify physical dimensions to the applicable component specification. Pre and Post Electrical Test not required.                                             |                                          |




| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 6/20          |

### 8. Taping & Reel

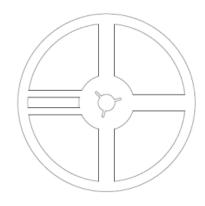
### 8.1 Taping Dimensions

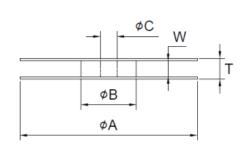
4mm pitch paper



| Packing       | Туре  | Α        | В        | W       | F        | Е        | P <sub>1</sub> | P <sub>2</sub> | $P_0$   | $D_0$               | Т        |
|---------------|-------|----------|----------|---------|----------|----------|----------------|----------------|---------|---------------------|----------|
|               | CFS04 | 0.7±0.05 | 1.2±0.05 | 8.0±0.2 | 3.5±0.05 | 1.75±0.1 | 2.0±0.1        | 2.0±0.05       | 4.0±0.1 | +0.1<br>φ 1.5<br>-0 | 0.45±0.1 |
| Paper<br>Tape | CFS06 | 1.1±0.1  | 1.9±0.1  | 8.0±0.2 | 3.5±0.05 | 1.75±0.1 | 4.0±0.1        | 2.0±0.05       | 4.0±0.1 | +0.1<br>φ 1.5<br>-0 | 0.64±0.1 |
|               | CFS12 | 2.0±0.15 | 3.6±0.2  | 8.0±0.2 | 3.5±0.05 | 1.75±0.1 | 4.0±0.1        | 2.0±0.05       | 4.0±0.1 | +0.1<br>φ 1.5<br>-0 | 0.84±0.1 |

Unit: mm

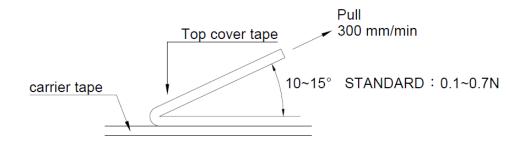

| Type Size |    | Paper Tape |
|-----------|----|------------|
|           |    | 2 mm pitch |
|           |    | 180mm/R    |
| CFS       | 04 | 10000      |


| Type Size |    | Paper Tape |  |
|-----------|----|------------|--|
|           |    | 4 mm pitch |  |
|           |    | 180mm/R    |  |
| CFS       | 06 | 5000       |  |
| CFS       | 12 | 5000       |  |



| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 7/20          |

### 8.2 Reel Specifications






Unit: mm

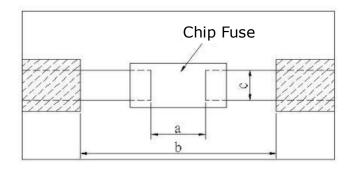
| Series                  | $\phi$ A | $\phi$ B | φC       | W       | Т        |
|-------------------------|----------|----------|----------|---------|----------|
| CFS04<br>CFS06<br>CFS12 | 178 ±2.0 | 60.0±1.0 | 13.0±1.0 | 9.0±1.0 | 11.4±2.0 |

### 8.3 Peel -off force:



### 9 Storage Conditions:

Temperature:  $5^{\circ}$ C ~35 $^{\circ}$ C ,Humidity:40%~75%

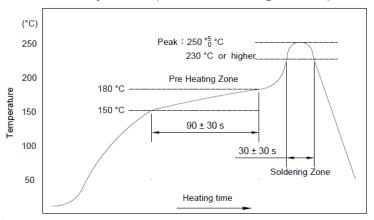

### 10 Shelf Life:

2 years from manufacturing date



| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 8/20          |

### 11 Recommended land patterns




| Land pattern |           | Dimension |           |           |  |
|--------------|-----------|-----------|-----------|-----------|--|
| Type         | Size      | а         | b         | С         |  |
| CFS          | 04 (0402) | 0.55~0.65 | 1.40~1.60 | 0.74~0.94 |  |
| CFS          | 06 (0603) | 0.85~0.95 | 2.00~2.20 | 1.50~1.70 |  |
| CFS          | 12 (1206) | 0.95~1.05 | 4.40~5.00 | 2.30~2.50 |  |



| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 9/20          |

### 12. Recommend IR - Reflow profile: (solder: Sn96.5 / Ag3 / Cu0.5)



Peak : 250+5/-0°C,5 sec.

Pre–heat Zone : 150 to 180  $^{\circ}$ C, 90±30 sec Soldering Zone : 230 $^{\circ}$ C or higher, 30±10 sec

### 13. Approval by UL248-14

The fuses have been approved by UL. File No. of UL Recognition is E241710

### 14. ECN

Engineering Change Notice: The customer will be informed with ECN if there is significant modification on the characteristics and materials described in Approval Sheet.

### 15. Manufacturing Country & City:

TA-I TECHNOLOGY CO., LTD. (Taiwan- Tao Yuan)

Tel: (+886) 3-3246169 Fax: (+886) 3-3246167

### **Associated companies:**

(1) TA-I TECHNOLOGY (SU ZHOU) CO., LTD. (China – Su Zhou)

Tel: (+86) 512-63457879 Fax: (+86) 512-63457869

(2) TA-I TECHNOLOGY ELECTRONIC (DONGGUAN) CO., LTD. (China –Dongguan)

Tel: (+86) 769-8339-4790~3 Fax: (+86) 769-8339-4794

(3) FORTUNE TASK ENTERPRISES LIMITED (China - Dongguan)

Tel: (+86) 769-8339-4790~3 Fax: (+86) 769-8339-4794

(4) TAI OHM ELECTRONICS (M) SDN. BHD. (Malaysia - Penang)

Tel: (+60) 4-3900480 Fax: (+60) 4-3901481



### Thin Film Chip Fuse (AEC-Q200 tested/C7008)

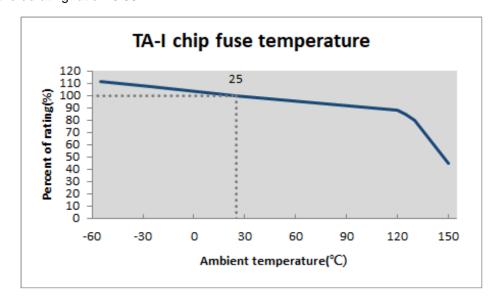
| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 10/20         |

### 16. Selection Guideline of Fuse:

- Checklist of selection factors
  - Normal operating current

  - Ambient Temperature
  - Overload current and length of time in which the fuse must open .
  - ⊚Type of fuse (SMD or Tube ) and physical size limitation (0603 or 1206)
- Normal operating current

e.g., Rectangular Wave, If I p = 1.5 A, Normal operating current = 1.5 A


| No. | Туре                   | Waveform                                                                | Formula                            |
|-----|------------------------|-------------------------------------------------------------------------|------------------------------------|
| 1   | Sinusoidal Waveform    | Im T                                                                    | $\frac{1}{\sqrt{2}}I_m = 0.707I_m$ |
| 2   | All Wave Rectification | O T T                                                                   | $\frac{1}{\sqrt{2}}I_m = 0.707I_m$ |
| 3   | Half Wave              | $\begin{array}{c c} & & \\ \hline \\ O & & \frac{T}{2} & T \end{array}$ | 0.5 <i>I</i> <sub>m</sub>          |
| 4   | Triangle Waveform      | $\frac{1}{0}$ $\frac{1}{2}$ $T$                                         | $\frac{1}{3}I_m = 0.577I_m$        |
| 5   | Rectangular Waveform   |                                                                         | $I_m$                              |
| 6   | Trapezoidal Waveform   | O T                                                                     | $I_m\sqrt{1-rac{8lpha}{3T}}$      |



| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 11/20         |

| No. | Туре              | Waveform | Formula                     |
|-----|-------------------|----------|-----------------------------|
| 7   | Rectangular Pulse | oc t     | $I_m \sqrt{\frac{\tau}{T}}$ |
| 8   | Triangle Pulse    | o c T    | $I_{m}\sqrt{rac{	au}{3T}}$ |

- Derating ratio for different ambient Temperature



- Calculating the required rating of fuse needed.
  - Safety coefficient: 70% is safety coefficient from practical experience
  - $\bigcirc \frac{\textit{Normal Operating Current}}{0.7 \times \textit{derating ratio}} < \text{ rating current of fuse}$
  - e.g.

Condition: Normal operating current =1.5 A

Ambient temperature 40 °C: Derating ratio ≒ 0.95



| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 12/20         |

 $\frac{1.5}{0.7 \times 0.95}$  < rating current of fuse

2.255 < rating current of fuse

■ Determination of the type of fuse

e.g.Condition:

◆ Calculating value =2.255 A, 2.255A < rating current of fuse

Normal operating voltage : DC 12 V

◆ Following bottom index-table: suggesting use CFS06V3T2R50.

| Part<br>Designation | Marking  | Rated<br>Current | Rated<br>Voltage | Part<br>Designation | Marking  | Rated<br>Current | Rated<br>Voltage | Part<br>Designation | Marking  | Rated<br>Current | Rated<br>Voltage |
|---------------------|----------|------------------|------------------|---------------------|----------|------------------|------------------|---------------------|----------|------------------|------------------|
| CFS04V3TR50         | F        | 0.5A             | 32V              | CFS06V5TR40         | <u>E</u> | 0.40A            | 50V              | CFS12V6TR50         | F        | 0.50A            | 63V              |
| CFS04V3TR80         | K        | 0.80A            | 32V              | CFS06V5TR50         | F        | 0.5A             | 50V              | CFS12V6TR80         | K        | 0.80A            | 63V              |
| CFS04V3T1R0         | L        | 1.00A            | 32V              | CFS06V3TR63         | I        | 0.63A            | 32V              | CFS12V6T1R0         | L        | 1.00A            | 63V              |
| CFS04V3T1R25        | <u>M</u> | 1.25A            | 32V              | CFS06V3TR70         | J        | 0.7A             | 32V              | CFS12V6T1R25        | <u>M</u> | 1.25A            | 63V              |
| CFS04V3T1R50        | Р        | 1.50A            | 32V              | CFS06V3TR80         | K        | 0.80A            | 32V              | CFS12V6T1R50        | Р        | 1.50A            | 63V              |
| CFS04V3T1R60        | N        | 1.60A            | 32V              | CFS06V3T1R0         | L        | 1.00A            | 32V              | CFS12V6T2R0         | S        | 2.00A            | 63V              |
| CFS04V3T2R0         | S        | 2.00A            | 32V              | CFS06V3T1R25        | <u>M</u> | 1.25A            | 32V              | CFS12V3T2R50        | Т        | 2.50A            | 32V              |
| CFS04V3T2R50        | Т        | 2.50A            | 32V              | CFS06V3T1R50        | Р        | 1.50A            | 32V              | CFS12V3T3R00        | 3        | 3.00A            | 32V              |
| CFS04V3T3R0         | 3        | 3.00A            | 32V              | CFS06V3T1R60        | N        | 1.60A            | 32V              | CFS12V3T4R0         | W        | 4.00A            | 32V              |
| CFS04V3T3R15        | U        | 3.15A            | 32V              | CFS06V3T2R0         | S        | 2.00A            | 32V              | CFS12V3T5R0         | Υ        | 5.00A            | 32V              |
| CFS04V3T4R0         | W        | 4.00A            | 32V              | CFS06V3T2R50        | Т        | 2.50A            | 32V              | CFS12V3T7R0         | Z        | 7.00A            | 32V              |
|                     |          |                  |                  | CFS06V3T3R00        | 3        | 3.00A            | 32V              |                     |          |                  |                  |
|                     |          |                  |                  | CFS06V3T3R15        | U        | 3.15A            | 32V              |                     |          |                  |                  |
|                     |          |                  |                  | CFS06V3T4R0         | W        | 4.00A            | 32V              |                     |          |                  |                  |
|                     |          |                  |                  | CFS06V3T5R0         | Υ        | 5.00A            | 32V              |                     |          |                  |                  |
|                     |          |                  |                  | CFS06V3T6R0         | <u>6</u> | 6.00A            | 32V              |                     |          |                  |                  |

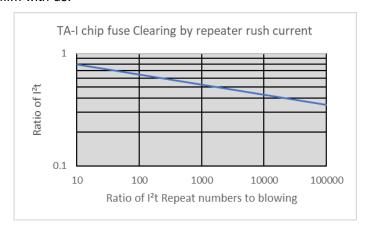
### Inrush current:

- ◆ Considering inrush waveform & calculate I²t (A²s) value
- ◆ Choosing fuse's l²t (A²s) value > calculate l²t (A²s) value
- Considering Ratio of I<sup>2</sup>t repeat numbers to blowing.
- Confirm with us.

e.g., choosing 0603 Fuse

Condition:




| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 13/20         |

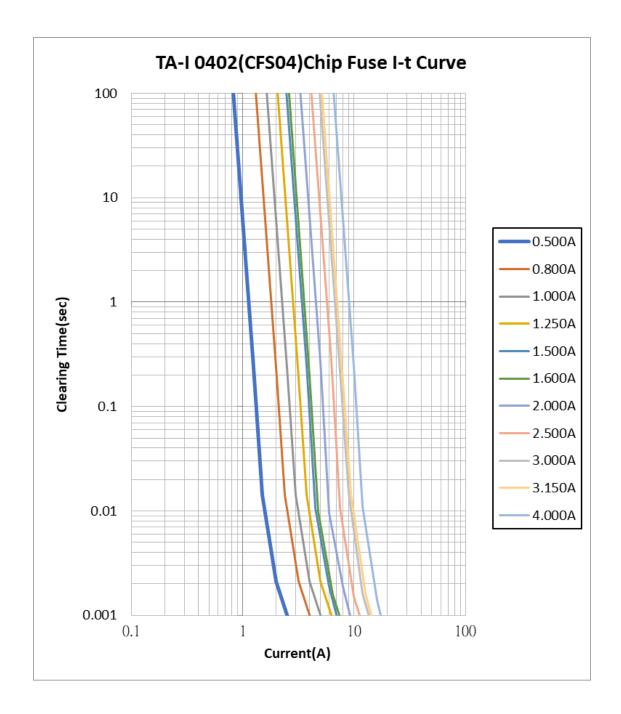
- 1. Rectangular Wave, Ip = 4 A, t = 1 ms, calculate  $Ip^2t = 4^2 x 1 x 10^{-3} = 0.016 (A^2s)$
- 2. Choosing CFS06V3T1R25, $I^2t = 0.057$  (A<sup>2</sup>s)  $\rightarrow$  Page 13 index-table
- 3. Inrush shock : 100,000 times (i=0.35)  $\rightarrow$  inrush ratio
- 4. Choosing fuse's I2t (A2s) value X Derating ratio (inrush 100000 times) > calculate I2t (A2s) value
- 5.  $0.057 \times 0.35 = 0.01995 \text{ (A}^2\text{s)} > 0.016 \rightarrow \text{CFS}06\text{V3T1R25}$  is able to meet circuit's application

| TA-I FUSE I <sup>2</sup> t (A <sup>2</sup> s) |                                              |              |                                              |              |                                              |
|-----------------------------------------------|----------------------------------------------|--------------|----------------------------------------------|--------------|----------------------------------------------|
| Part Number                                   | Typical I <sup>2</sup> t (A <sup>2</sup> s)* | Part Number  | Typical I <sup>2</sup> t (A <sup>2</sup> s)* | Part Number  | Typical I <sup>2</sup> t (A <sup>2</sup> s)* |
| CFS04V3TR50                                   | 0.00370                                      | CFS06V5TR40  | 0.004                                        | CFS12V6TR50  | 0.030                                        |
| CFS04V3TR80                                   | 0.00947                                      | CFS06V5TR50  | 0.009                                        | CFS12V6TR80  | 0.068                                        |
| CFS04V3T1R0                                   | 0.01479                                      | CFS06V3TR63  | 0.017                                        | CFS12V6T1R0  | 0.098                                        |
| CFS04V3T1R25                                  | 0.02310                                      | CFS06V3TR70  | 0.023                                        | CFS12V6T1R25 | 0.155                                        |
| CFS04V3T1R50                                  | 0.02400                                      | CFS06V3TR80  | 0.024                                        | CFS12V6T1R50 | 0.236                                        |
| CFS04V3T1R60                                  | 0.03734                                      | CFS06V3T1R0  | 0.026                                        | CFS12V6T2R0  | 0.339                                        |
| CFS04V3T2R0                                   | 0.04040                                      | CFS06V3T1R25 | 0.057                                        | CFS12V3T2R50 | 0.605                                        |
| CFS04V3T2R50                                  | 0.06760                                      | CFS06V3T1R50 | 0.081                                        | CFS12V3T3R00 | 0.933                                        |
| CFS04V3T3R0                                   | 0.09860                                      | CFS06V3T1R60 | 0.086                                        | CFS12V3T4R0  | 1.537                                        |
| CFS04V3T3R15                                  | 0.10868                                      | CFS06V3T2R0  | 0.115                                        | CFS12V3T5R0  | 2.533                                        |
| CFS04V3T4R0                                   | 0.11450                                      | CFS06V3T2R50 | 0.200                                        | CFS12V3T7R0  | 5.684                                        |
|                                               |                                              | CFS06V3T3R00 | 0.210                                        |              |                                              |
|                                               |                                              | CFS06V3T3R15 | 0.279                                        |              |                                              |
|                                               |                                              | CFS06V3T4R0  | 0.326                                        |              |                                              |
|                                               |                                              | CFS06V3T5R0  | 0.622                                        |              |                                              |
|                                               |                                              | CFS06V3T6R0  | 2.700                                        |              |                                              |

Note\*: Typical I²t value is measured at 10x-rated current, application with surge over 10x-rated current.

Please confirm with us.





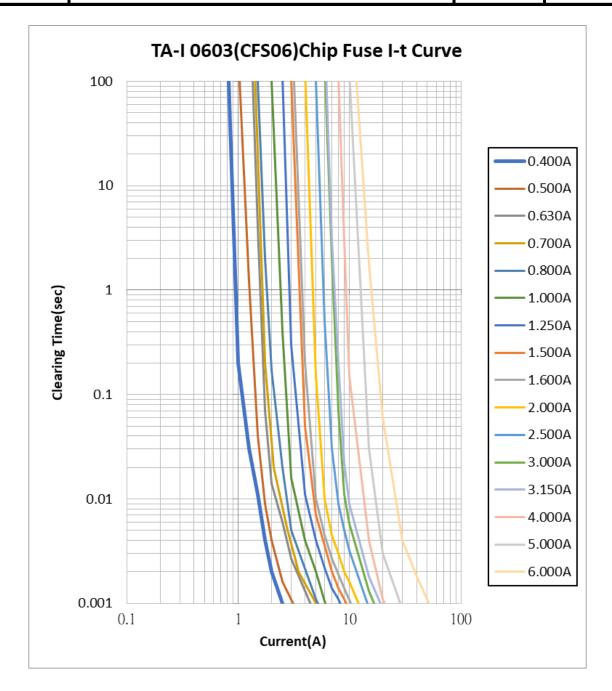

| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 14/20         |

| No. | Туре                               | Waveform                        | Formula                                                                                                    |
|-----|------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------|
| 1   | Sinusoidal Waveform<br>(1 Cycle)   |                                 | $\frac{1}{2}I_m^2t$                                                                                        |
| 2   | Sinusoidal Waveform<br>(1/2 Cycle) | o t i                           | $\frac{1}{2}I_m^2t$                                                                                        |
| 3   | Triangle Waveform                  |                                 | $\frac{1}{3}I_m^2t$                                                                                        |
| 4   | Rectangular Waveform               | O t 1                           | ${I_m}^2 t$                                                                                                |
| 5   | Trapezoidal Waveform               | O t t: t: 1                     | $\frac{1}{3}I_{m}^{2}t + I_{m}^{2}(t_{1} - t_{2}) + \frac{1}{3}I_{m}^{2}(t_{2} - t_{3})$                   |
| 6   | Various Waveform 1                 |                                 | $I_1I_2t + \frac{1}{3}(I_1 - I_2)^2t$                                                                      |
| 7   | Various Waveform 2                 | O t t t 1 1                     | $I_1I_2t + \left[I_1I_2t + \frac{(I_1 - I_2)^2}{3}\right] *$ $(t_2 - t_1) + \frac{1}{3}(I_2)^2(t_3 - t_2)$ |
| 8   | Charge/Discharge<br>Waveform       | 0.368lm i(t)=lme <sup>-tc</sup> | $\frac{1}{2}(I_m^2\tau)$                                                                                   |
| 9   | Lightning Surge<br>Waveform        | 0.5lm lm O t t 1                | $I_m^2 \left[ \frac{t_1}{3} + 0.721(t_2 - t_1) \right]$                                                    |



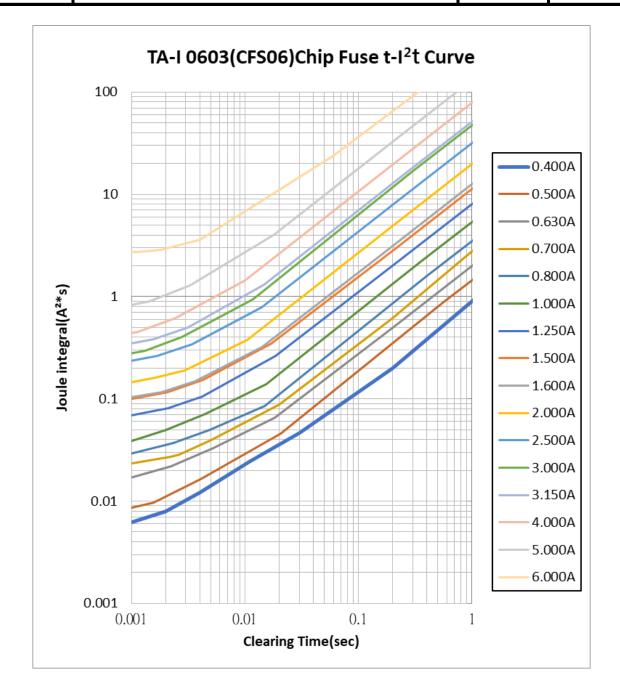

| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 15/20         |





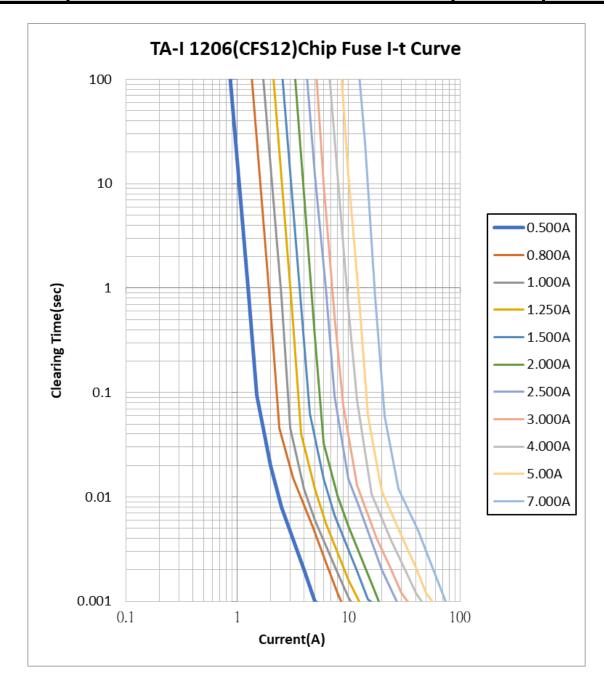

| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 16/20         |






| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 17/20         |

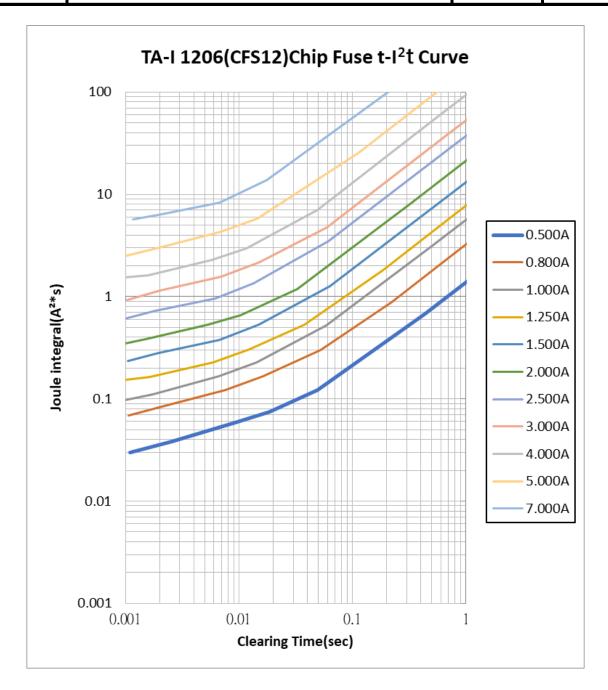





| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 18/20         |






| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 19/20         |





### Thin Film Chip Fuse (AEC-Q200 tested/C7000)

| Document No | TCFS-XX0S004P |
|-------------|---------------|
| Issued date | 2024/05/17    |
| Page        | 20/20         |

